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A method is developed for computing solutions to some class of linear and nonlinear trans-
port equations (hyperbolic partial differential equations with smooth solutions), in any
dimension, which exploits Shannon sampling, widely used in information theory and sig-
nal processing. The method can be considered a spectral or a wavelet method, strictly
related to the existence of characteristics, but allows, in addition, for some precise error
estimates in the reconstruction of continuous profiles from discrete data. Non-dissipativity
and (in some case) parallelizability are other features of this approach. Monotonicity-
preserving cubic splines are used to handle nonuniform sampling. Several numerical
examples, in dimension one or two, pertaining to single linear and nonlinear (integro-
differential) equations, as well as to certain systems, are given.
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1. Introduction

In this paper, we develop a method for computing solutions to some class of linear and nonlinear transport equations,
i.e. hyperbolic partial differential equations (PDEs) with smooth solutions, in any dimension. Such a method exploits the
celebrated Shannon sampling theorem, widely used in the field of information theory, in particular in telecommunications
and signal processing. It can be considered essentially as a spectral method, strictly related to the existence of characteristics,
and moreover has the attractive feature of representing, at any time, the unknown (sought) solution as a superposition of
elementary distributions (delta functions). It consists of taking a suitable number of sampled values of the initial profile,
solving then a related system of ordinary differential equations (ODEs), and reconstructing the continuous solution at any
chosen time t > 0 through the so-called sinc or cardinal functions [25,16,12,20,22,23]. This method can also be considered
a wavelet method, since the sinc functions are wavelets (the Shannon wavelets), but we use them only in the reconstruction,
made according to Shannon (or Whittaker–Shannon–Kotel’nikov) sampling theorem, e.g. see [28]. Incidentally, observe that
since the sinc kernels decay slowly, such expansions are often avoided. However, a ‘‘fast sinc transform” does exist, which
. All rights reserved.
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exploits the nonuniform fast Fourier transform (NUFFT), and whose cost is comparable to that of the FFT [10]. De la Vallée
Poussin seems to have been the first who introduced this kind of interpolation [5]; nice reviews about this subject can be
found in [1,7,11,23,14,18].

It is remarkable that, according to Shannon theorem, the reconstruction through the sinc interpolation of a band-limited
function, i.e. a function whose Fourier transform has a bounded support, can be virtually error free. By the celebrated Paley–
Wiener theorem, for instance, any entire function of exponential type which belongs to L2ðRÞ has an L2 Fourier compactly
supported transform [13]. The reconstruction is guaranteed provided that a sufficiently high number of ‘‘samples” is taken.
In our method, numerical errors come in, of course, evaluating the various samples, which are obtained upon numerical inte-
gration of the ODEs governing the characteristics. Needless to say that the possibility of reducing the numerical solution of
the given PDE to that of a family of ODEs offers several advantages,such as the choice of highly sophisticated ODE integrators.
In addition, since it avoids spatial discretization, this method turns out to be non-dissipative, and is in some cases paralleliz-
able. We compared the results obtained by an explicit fourth-order Runge–Kutta solver with those computed by the ‘‘opti-
mal” third-order TVD Runge–Kutta scheme, observing negligible differences. Compared to the classical method of
characteristics, however, the present Shannon-based sampling approach allows, in principle, to solve the aforementioned
ODEs without introducing any interpolation error, and the minimum number of samples needed for the full reconstruction
of the solution can be estimated precisely. Comments on the numerical errors of various kind are made below, in Section 2.

The hyperbolic equations to which this method can be applied are scalar equations but in any dimension, possibly non-
linear, nonlocal, and singular at the boundaries [8]), as well as certain systems. In this paper, we assume that they possess
smooth solutions, in particular that they have no shocks (for such a reason we refer to them as to ‘‘transport equations”).

Shannon sampling has been extensively used in the field of signal processing, in modern telecommunication theory, but
also in a few other areas of numerical analysis, such as interpolation, e.g. see [22,23,7]. It has also been used to solve certain
PDEs, but upon reduction of them to integral equations, e.g. see [21].

In Section 2, we present the general ideas about the method. In Section 3, we introduce some additional ingredients, re-
lated to the nonuniformity of the samples distribution. In fact, ‘‘shape preserving” cubic splines have been used. In Section 4,
some numerical examples in 1D are given, in Section 5 the method and related examples pertaining to 2D problems are pre-
sented, while in Section 6 the same is done for some systems of PDEs. In Section 7, finally, the high points of the paper are
summarized.

2. Generalities

The so-called Whittaker–Shannon–Kotel’nikov theorem, or simply Shannon sampling theorem, states that, if a function f
is band-limited to ½�pW;þpW�; W > 0, i.e. it belongs to L2ðRÞ \ C0ðRÞ and its Fourier transform vanishes outside the interval
½�pW;þpW�, so that it can be represented as
f ðxÞ ¼
Z þpW

�pW
e�ixnbf ðnÞdn ð1Þ
for some function bf 2 L2ðð�pW;þpWÞÞ, then it can be reconstructed, i.e. fully recovered, from its samples f ðk=WÞ, taken at
evenly spaced points, xk :¼ k=W; k 2 Z. This is done through the interpolation formula
f ðxÞ ¼
Xþ1

k¼�1
f

k
W

� �
sin½pðWx� kÞ�

pðWx� kÞ ¼:
Xþ1

k¼�1
f

k
W

� �
sincðWx� kÞ; ð2Þ
where the cardinal or sinc function, sinc x :¼ sinðpxÞ
px appears, and the series in (2) converges absolutely and uniformly on com-

pact subsets of the real line [1,28]. Note that here the step-size in the interpolation is h :¼ 1=W .
In this paper, we apply the idea of the Shannon sampling to solutions of certain evolutionary partial differential equations,

say uðx; tÞ. We consider them as ‘‘signal” but as functions of space, x, for fixed times. ‘‘Finite duration” or ‘‘time-limited” sig-
nals will refer therefore to functions compactly supported in space, t P 0 being fixed. For a full, exact reconstruction, signals
may have an infinite duration, but should be band-limited, and the sampling frequency should be equal to or larger than the
Nyquist frequency, which in the present notation is W; hence one should take h 6 1=W . Clearly, when the signal has an infi-
nite duration, infinitely many equally spaced samples should be taken, and in practice this would imply a truncation error as
the series in (2) must be necessarily terminated. Also, the sinc kernel decays slowly, hence the series in (2) converges slowly,
to the point that errors in samples amplitudes might result in divergence. A good way to circumvent such a difficulty is
‘‘oversampling”, i.e. using a sampling frequency kpW with k > 1 instead of pW , see [4].

In our examples below, we have compactly supported initial values uðx;0Þ, say, e.g. in 1D, on some interval ½0; L�, and also
the solution uðx; tÞ will be compactly supported at every time t > 0. Hence, a finite number of samples, N, larger than 2pWL,
suffices. However, the requirement of being band-limited cannot be satisfied when the signal has a finite duration. Much
research has been devoted to this case, which gives rise to the so-called aliasing error. A useful result is the following: If
f 2 L2ðRÞ \ C0ðRÞ is such that its Fourier transform is bf 2 L1ðRÞ, then the estimate
jf ðxÞ � ðSW f ÞðxÞj 6
ffiffiffiffi
2
p

r Z
jnjPpW

jbf ðnÞjdn; ð3Þ
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holds, where ðSW f ÞðxÞ denotes the series in (2), ‘‘called the sampling series of f”, e.g. see [1]. This means that f can be approx-
imated uniformly by the sampling series SW f . In (3) there is an upper bound for the error made taking SW f in place of f, and it
has been shown that such an estimate is optimal since the constant

ffiffiffiffiffiffiffiffiffi
2=p

p
cannot be improved [1]. Clearly, when f is band-

limited (to the interval ½�pW;þpW�), the previous formula reduces to the usual one, i.e. the approximation being discussed
yields the exact result [1].

In addition to the truncation error and the aliasing error, the signal reconstruction may be affected by other errors, such
as, e.g. roundoff of the sample amplitudes and imperfect nodes, k=W [15,24]. In signal processing, roundoff may be due to
quantization, while for us it may be due to the numerical error made by the ODE integrators.

On the other hand, every given scalar hyperbolic equation, in any dimension, admits of characteristics. These are a family
of solutions to a related ODE system, whose size equals the dimension above, and the PDE itself becomes a (scalar) ODE on
each characteristic.

The class of equations to which we shall apply the Shannon sampling, is given by
@tuþrx � f ðu; x; tÞ ¼ cðx; tÞuþ sðx; tÞ; x 2 D # Rd; t > 0; ð4Þ
where u is scalar, and
f ðu; x; tÞ :¼ ½aðx; tÞgðI½u�Þ þ bðx; tÞ�u; ð5Þ
gð�Þ being a possibly nonlinear function of its argument, I½u�, where
I½u�ðtÞ :¼
Z

Rd
KðnÞuðn; tÞdn: ð6Þ
We assume for simplicity that all coefficients are smooth functions. More general forms could be considered. For instance, on
the right-hand side of (5), a term like aðx; tÞ could be added, which amounts to change the source term, sðx; tÞ, in (4). Sim-
ilarly, adding a term like bðI½u�Þ or letting g depend on x and t as well. Moreover, g could be replaced by a possibly nonlinear
function of m arguments like

R
Rd Kiðx0Þuðx0; tÞdx0, for i ¼ 1;2; . . . ;m. Finally, the kernel Kðx0Þ (or the kernels Kiðx0Þ) may be

let also depend on x and t. Clearly, suitable supports of such kernels may reduce the domain of integration to a smaller
(bounded or unbounded) one, and in particular letting the integral act on a lower dimensional space, Rd0 , with d0 < d. The
choice made in (4) is only due to simplicity reasons. Note that many conservative or nonconservative problems (in particular,
conservation laws and balance laws) are included here; e.g. see [6,8].

Consider, for definiteness, the class of scalar hyperbolic (transport) equations, in space dimension d P 1,
ut þr � f ðuÞ ¼ cðx; tÞuþ sðx; tÞ; ð7Þ
subject to certain initial or initial-boundary data. Here, x ¼ ðx1; x2; . . . ; xdÞ 2 Rd; 0 < t < T; u ¼ uðx; tÞ and cðx; tÞ are scalar,
sðx; tÞ is a source term, f ¼ ðf1; f2; . . . ; fdÞ 2 Rd, and the appropriate smooth regularity is assumed throughout. Eq. (7) can be
rewritten as
Lu :¼ ut þ
Xd

i¼1

giðuÞuxi
� cðx; tÞu� sðx; tÞ ¼ 0; ð8Þ
where we set giðuÞ :¼ f 0i ðuÞ; gi, as well as f, might also depend explicitly on time. We shall force the ideally sampled solution,
say
uSðx; tÞ :¼
XNT

n¼1

uðxnðtÞ; tÞ
Yd

i¼1

dðxi � xn
i ðtÞÞ; ð9Þ
where we set x ¼ xnðtÞ � ðxn
1ðtÞ; . . . ; xn

dðtÞÞ, to solve Eq. (8) on characteristics, while the reconstructed solution, at time t, is gi-
ven by
uðx; tÞ ¼
Xþ1

n¼�1
uðnh; tÞsinc

x� nh
h

� �
; ð10Þ
being
uðnh; tÞ ¼ 1
h

Z þ1

�1
uðx; tÞsinc

x� nh
h

� �
dx; ð11Þ
for x in R. In Rd; d > 1, we have instead
uðx1; . . . ; xd; tÞ ¼
Xþ1

k1 ;...;kd¼�1
uðk1h1; . . . ; kdhd; tÞ

Yd

i¼1

sinc
xi � kihi

hi

� �
; ð12Þ
where
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uðk1h1; . . . ; kdhd; tÞ ¼
1

h1 � � �hd

Z
R

. . .

Z
R

uðx1; . . . ; xd; tÞ
Yd

i¼1

sinc
xi � kihi

hi

� � !
dx1 � � �dxd: ð13Þ
We have assumed equally spaced interpolation points on each direction, the space step-size being hi in the direction xi.
In (9), NT denotes the maximum number of sampled values used (up to time T); similar results can be obtained if the sam-

ple index runs over an interval like ð�NT ;NTÞ, with NT 6 þ1. Let evaluate first
uS
t ðx; tÞ ¼

@

@t

XNT

n¼1

uðxnðtÞ; tÞ
Yd

i¼1

dðxi � xn
i ðtÞÞ

" #
¼
XNT

n¼1

Xd

i¼1

uxi
ðxnðtÞ; tÞ½ðxn

i ðtÞÞ
0 � giðuÞ� þ cuþ s

" #Yd

i¼1

dðxi � xn
i ðtÞÞ

(

�uðxnðtÞ; tÞ
Xd

i¼1

Yd

j¼1;j–i

dðxj � xn
j ðtÞÞ

 !
dðxi � xn

i ðtÞÞðxn
i ðtÞÞ

0

)
;

where we have used (8) to eliminate ut ; ðxn
i ðtÞÞ

0 ¼ dxn
i ðtÞ=dt, and u is evaluated at ðxnðtÞ; tÞ;
uS
xi
ðx; tÞ ¼ @

@xi

XNT

n¼1

uðxnðtÞ; tÞ
Yd

i¼1

dðxi � xn
i ðtÞÞ

" #
¼
XNT

n¼1

uðxnðtÞ; tÞ @
@xi

Yd

i¼1

dðxi � xn
i ðtÞÞ

 !

¼
XNT

n¼1

uðxnðtÞ; tÞ
Yd

j¼1;j–i

dðxj � xn
j ðtÞÞ

 !
d0ðxi � xn

i ðtÞÞ:
We then obtain
LuSðx; tÞ ¼ uS
t þ

Xd

i¼1

giðuSÞuS
xi
� cuSðx; tÞ � sðx; tÞ

¼
XNT

n¼1

Xd

i¼1

uxi
ðxnðtÞ; tÞ½ðxn

i Þ
0 � giðuÞ� þ cuðx; tÞ þ sðx; tÞ

" #Yd

i¼1

dðxi � xn
i ðtÞÞ

(

�u
Xd

i¼1

ðxn
i Þ
0d0ðxi � xn

i ðtÞÞ
Yd

j¼1;j–i

dðxj � xn
j ðtÞÞ þ

Xd

i¼1

giðuSÞud0ðxi � xn
i ðtÞÞ

Yd

j¼1;j–i

dðxj � xn
j ðtÞÞ

)
� cuSðx; tÞ � sðx; tÞ

¼
XNT

n¼1

Xd

i¼1

uxi
ðxnðtÞ; tÞ½ðxn

i Þ
0 � giðuÞ� þ sðxnðtÞ; tÞ

" #Yd

i¼1

dðxi � xn
i ðtÞÞ

(

�
Xd

i¼1

½ðxn
i Þ
0 � giðuSÞ�d0ðxi � xn

i ðtÞÞ
Yd

j¼1;j–i

dðxj � xn
j ðtÞÞ

 !)
� sðx; tÞ:
Again, u and uxi
are evaluated at ðxnðtÞ; tÞÞ. It is essential here to note that giðuÞ � giðuSÞ, in view of the fact that the (only)

argument of the giðuÞ’s is the integral
R

Rd KðnÞuðn; tÞdn, and such an integral takes the same value for uS given by (9) and u
considered expanded in series of sinc as in (2), e.g. see [13, Section 2.1]. (We do not discuss here the various classes of func-
tions, such as, for instance, the Paley–Wiener class, to which this kind of interpolation applies.)

Now, equation LuSðx; tÞ ¼ 0 holds if, for every n; n ¼ 1;2; . . . ;NT ,
Xd

i¼1

uxi
ððxn

i Þ
0 � giÞ

 ! Yd

i¼1

dðxi � xn
i ðtÞÞ

 !
� u

Xd

i¼1

ððxn
i Þ
0 � giÞd0ðxi � xn

i ðtÞÞ
Y
j–i

dðxj � xn
j ðtÞÞ ¼ 0; ð14Þ
and to this purpose, the conditions
ðxn
i Þ
0 ¼ giðuðxnðtÞ; tÞ; i ¼ 1;2; . . . d; n ¼ 1;2; . . . ;NT : ð15Þ
suffice. These are precisely the ODEs defining the characteristics of the PDE in (7). After that the characteristics have been
obtained, we have from such PDE
du
dt

����
char:

¼ du
dt
ðxnðtÞ; tÞ ¼ cðxnðtÞ; tÞuðxnðtÞ; tÞ þ sðxnðtÞ; tÞÞ; n ¼ 1;2; . . . ;NT : ð16Þ
3. Reconstructing the solution at times t > 0: a Shannon formula for unevenly spaced points in 1D

Even starting from evenly spaced samples, say xn, at time t ¼ 0, the sampled values, xnðtÞ, needed to reconstruct the solu-
tion uðx; tÞ at later times, t > 0, will be in general unevenly spaced. Therefore, the classical, simplest formulation of Shannon
theorem cannot be used. Generalizations of Shannon’s theorem for such cases have been given in the literature, see, e.g. the
Paley–Wiener–Levinson sampling theorem [28]. We prefer to keep the form similar to that in (2) proceeding as follows, cir-
cumventing such a difficulty (which is the same encountered when using Fourier series on nonuniform meshes) mapping the
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unevenly spaced points onto a uniformly spaced set of points. This task can be accomplished by means of monotonic maps, so
to preserve the order of points. One of the most effective methods is to construct such a map using a special kind of cubic
splines, which do preserve monotonicity (giving up C2-continuity). A large body of literature has been devoted to such issues,
since they have an independent interest. These splines are referred to as ‘‘shape preserving” splines, e.g. see [2,3,17,19,26].
The aforementioned map, however, may destroy the property of having a rigorously finite band size, hence some care should
be devoted to this point too.

Consider a function, f ðxÞ, known at a finite number of unevenly spaced points, xi; i ¼ 1; . . . ;N. Let T be a one-to-one trans-
formation, mapping the xi’s into a set of evenly spaced points, ni, and let h be the distance between any two of the ni’s, i.e.
ni ¼ ih ¼ TðxiÞ; i ¼ 1;2; . . . ;N:
If T is differentiable and S denotes the inverse transform of T, we have
xi ¼ SðniÞ ¼ SðihÞ; i ¼ 1;2; . . . ;N;
and then jT 0ðxÞj ¼ 1=jS0ðnÞj, x and n being linked by the previous relations. Define the application of f onto the domain of the
n’s as
gðnÞ ¼ f ðSðnÞÞ ¼ f ðxÞ;
see [19]. We then assume that g is known at the evenly spaced points ni ¼ ih for i ¼ 1; . . . ;N, and want to reconstruct f on the
entire domain.

When gðnÞ is a band-limited function, the Shannon sampling theorem can be used to reconstruct it, and hence to recover
f ðxÞ,
f ðxÞ ¼
XN

i¼1

gðihÞ sin½pðTðxÞ � ihÞ=h�
pðTðxÞ � ihÞ=h

¼
XN

i¼1

gðihÞsinc
TðxÞ � ih

h

� �

(see (2) with h ¼ 1=W). However, the property of f ðxÞ of being band-limited does not guarantee that g also enjoys the same
property. Therefore, a modified version of Shannon theorem, taking into account this fact, is required, which is
f ðxÞ ¼ jT 0ðxÞj
XN

i¼1

jS0ðihÞjgðihÞsinc
TðxÞ � ih

h

� �
; ð17Þ
see [19]. In our method below, the abscissas of the (space) points on which we want to reconstruct ‘‘the signal”, evolve in
time, hence a suitable technique is needed to reconstruct the transformation T at each time, so to pass from unevenly spaced
points to evenly spaced points. To this purpose, we construct monotonic cubic splines, which preserve the order of points.

To interpolate with monotone cubic splines, we proceed as follows. Given a set ðxi; niÞ of points in the ðx; nÞ plane, the
interpolatory function we construct is on each interval ðxi; xiþ1Þ a third-degree polynomial through the points ðxi; niÞ and
ðxiþ1; niþ1Þ. The slope at each node is prescribed in such a way to guarantee the monotonicity of the interpolant, termed
‘‘a shape preserving cubic spline” [2,3]). The resulting curve is continuous along with its first derivative. Giving up the con-
tinuity of the second derivative, the resulting degrees of freedom can be used to impose global monotonicity on the entire
interval. The method proposed in this paper does exploit an interpolant that is piecewise cubic and has a monotonic behav-
ior. Such interpolant is stable, that is it depends continuously on data, i.e. small perturbations on data lead to small changes
in the interpolant.

4. Examples of the reconstruction method for solving PDEs in 1D

Example 4.1. Consider, as a first elementary example, the linear scalar hyperbolic PDE
ut þ ð1þ xÞux ¼ 0; x 2 R; t > 0; ð18Þ

in one dimension, subject to the initial condition
uðx; 0Þ ¼ u0ðxÞ: ð19Þ
The characteristic exiting from x� is the solution to the Cauchy problem
dx
dt
ðtÞ ¼ 1þ xðtÞ; xð0Þ ¼ x�;
and hence is
xðt; x�Þ ¼ ð1þ x�Þet � 1: ð20Þ
On the characteristics, u satisfies the ODE
du
dt
ðxðt; x�Þ; tÞ ¼ 0;
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and hence
uðxðt; x�Þ; tÞ ¼ u0ðx�Þ: ð21Þ
This suggests a numerical scheme for solving the PDE in (18), as follows:

� a given (arbitrary) space interval, ½x1; x2�, is initially discretized with N (evenly spaced) nodes, say x�i ; i ¼ 1; . . . ;N;
� the initial data, u0ðxÞ, is sampled at the points x�i , i.e. the coefficient
li ¼ u0ðx�i Þ

is associated to every value x�i ;
� the initial profile u0ðxÞ can be represented by means of the basis functions sinc x, in view of Shannon theorem (provided

that the ‘‘signal” u0ðxÞ is band-limited and we use a sufficiently high number of samples; otherwise, act according to (3),
estimating a suitable finite bandwidth);

� the quantities xiðtÞ are let evolve, accordingly to the ODEs
dxi

dt
¼ 1þ xi;

which are solved numerically, e.g. by a Runge–Kutta method, with the initial data

xið0Þ ¼ x�i ; i ¼ 1; . . . ;N;

� at any given time t > 0, the ‘‘signal” uðx; tÞ is reconstructed (as a function of x), knowing that the value
li � uðxiðt; x�i Þ; tÞ ¼ u0ðx�i Þ is assigned to it, at the abscissa xiðtÞ.

Note that, during their evolution, the xiðtÞ’s may not remain necessarily evenly spaced (even though they started, at t ¼ 0,
evenly spaced). Hence, the reconstruction should be carried out using a Shannon formula for unevenly spaced points, see
(17), Section 3.

This procedure can be applied to every PDEs like
ut þ f ðxÞux ¼ 0; x 2 R; t > 0;
for which the evolution of the corresponding xiðtÞ’s is governed by the system of ODEs
dxi

dt
¼ f ðxÞ; i ¼ 1; . . . ;N;
under the initial conditions xið0Þ ¼ x�i . Here we give the results obtained applying the method described above to problem
(18) and (19).

If 2L is the support size of the ‘‘signal” and W its approximate bandwidth, the minimum number of samples required for
this purpose is approximately Ns ¼ 2WL; clearly, it would be safer to oversample, taking a number of points larger than that.
In this example we considered a Lorentzian-type initial profile,
0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

u(
x,

t)

Fig. 1. Profile of uðx; tÞ of Example 4.1, every 400 iterates.
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u0ðxÞ ¼
1

1þ ðx� 5Þ8
:

We used N ¼ 80 points to reconstruct the signal, while the minimum number required was 60. We let evolve the xiðtÞ’s for
t 2 ½0;2�. In Fig. 1, the behavior of uðx; tÞ is shown every 400 iterates (i.e. the solution is plotted at times t ¼ 0ð0:2Þ2, having
used a time-step h ¼ 0:001 in the computations).

Example 4.2. Consider the linear PDE
ut þ xux þ u ¼ 0; x 2 R; t > 0; ð22Þ
with the initial data
uðx; 0Þ � u0ðxÞ ¼
1

1þ ðx� x0Þ2m ;
for various fixed integers m, whose solution is
uðx; tÞ ¼ e�t

1þ ðxe�t � x0Þ2m :
The characteristic stemming from x� is the solution to the ODE problem
dx
dt
ðtÞ ¼ xðtÞ; xð0Þ ¼ x�;
and is thus given by
xðt; x�Þ ¼ x�et :
The solution on the characteristics is obtained solving the ODE
du
dt
ðxðt; x�Þ; tÞ ¼ �u;
and hence is
uðxðt; x�Þ; tÞ ¼ u0ðx�Þe�t : ð23Þ
We proceed as in Example 4.1. Now the quantities xiðtÞ’s evolve according to the ODE system
dxi

dt
¼ xi; xið0Þ ¼ x�i ; i ¼ 1; . . . ;N;
and at any given time t > 0; uðx; tÞ is reconstructed, knowing that at the abscissa xiðtÞ the value
liðtÞ � uðxiðt; x�i Þ; tÞ ¼ u0ðx�i Þe�t is assigned in view of (23). Again, the xiðtÞ’s, evolving, may not necessarily remain evenly
spaced.

The entire procedure can be applied to PDEs like
ut þ f ðxÞux þ gðxÞu ¼ 0; x 2 R; t > 0;
where the xiðtÞ’s solve the initial value problem
dxi

dt
¼ f ðxiÞ; xið0Þ ¼ x�i ; i ¼ 1; . . . ;N:
Then, we solve
du
dt
ðxiðtÞ; tÞÞ ¼ �gðxiðtÞÞuðxiðtÞ; tÞ; i ¼ 1; . . . ;N:
The solution to such a problem has been computed choosing as initial data the same Lorentzian profile of the previous exam-
ple. The numerical results have been compared with the analytical solution, as well as with that obtained by a finite differ-
ence scheme, see Figs. 2 and 3.

Remark. In [8], an initial-boundary value problem, used to describe crystal precipitation, which presents some pathologies,
was solved using the present numerical method. Such problem concerned a nonlinear integro-differential equation (see
Example 4.3 below), the unknown representing a crystal size distribution evolving in time. The quantities xiðtÞ represent
some of the crystal amplitudes, which vanish and hence are dropped out from the problem as time goes on. Consequently,
there is a progressive loss of amplitudes, i.e. of samples. This fact reduces the accuracy in the Shannon reconstruction. At
some t > 0, the number of samples fall below the minimum needed for a full reconstruction, and hence a re-sampling
procedure should be implemented. Alternatively, we can start with a sufficiently (initially redundant) higher number of
samples. However, in view of Shannon theorem, it is possible to evaluate at every time-step the Fourier transform of the
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Fig. 2. Comparison between the numerical solution uðx; tÞ of Example 4.2, obtained by the Shannon sampling method (continuous line) and the analytical
solution (dashed line), at various times.
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Fig. 3. Comparison between the numerical solution uðx; tÞ of Example 4.2, obtained by the Shannon sampling method (continuous line) and the solution
computed by a finite difference scheme (dashed line), at various times.
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solution, and estimate its bandwidth (in general approximately, even because it is necessarily unbounded) and hence decide
whether the number of available samples suffices. We refer to [8] for details and figures.

Example 4.3. Consider the nonlinear PDE
@tuþ @x u
Z þ1

�1
uðn; tÞdn

� �
¼ f ðx; tÞ; ð24Þ
where
f ðx; tÞ :¼ � 1þ 2
ffiffiffiffi
p
p

xe�t
� �

e�ðx
2þtÞ;
on the domain ð�1;þ1Þ � ð0; T�; T > 0 fixed, along with the initial and boundary data
uðx;0Þ ¼ u0ðxÞ :¼ e�x2
; uð	1; tÞ :¼ lim

x!	1
uðx; tÞ ¼ 0:
Its solution is
uðx; tÞ ¼ e�x2
e�t: ð25Þ



3510 R. Gobbi et al. / Journal of Computational Physics 229 (2010) 3502–3522
The characteristics of the PDE in (24) obey the ODE
x0ðtÞ ¼
Z þ1

�1
uðn; tÞdn; xð0Þ ¼ x�;
wherefrom
xðtÞ :¼ xðt; x�Þ ¼ x� þ
Z t

0
ds
Z þ1

�1
uðn; tÞdn: ð26Þ
The solution to (24) is therefore given by
uðxðt; x�Þ; tÞ ¼ u0ðx�Þ þ
Z t

0
f ðxðs; x�Þ; sÞds: ð27Þ
The algorithm which implements our Shannon-based method consists of the same steps of Example 4.1:

� Discretize the space interval ½�a; a� (for a value of a sufficiently large), with N points, say x�i , i ¼ 1;2; . . . ;N.
� Sample the (known) function u0ðxÞ at the points x�i , defining the ‘‘weights” li :¼ u0ðx�i Þ.
� Let evolve the positions xiðtÞ of the samples according to (26). Here, the space integral has been discretized by Simpson’s

rule. The calculation is affected by an additional OðDtÞ error, since the solution here has been integrated up to time t � Dt,
rather that up to time t.

� Update the coefficients liðtÞ according to (27). In particular, we obtain
liðtÞ ¼ liðt � DtÞ þ
Z tþDt

t
f ðxðs; x�i Þ; sÞds:

This integral is evaluated numerically by the trapezoidal rule.
� The solution is then reconstructed (approximately) by Shannon formula.

Taking, for definiteness, a ¼ 5; N ¼ 500; Dt ¼ 0:5� 10�4; T ¼ 5, the number of points on which the solution has been
reconstructed is M ¼ 2000. In Fig. 4, a comparison is made between the analytical solution, ~u, given in (25), and the numer-
ical solution, at various times. In Table 1, the r.m.s. error,
e2ðtÞ :¼
XM

i¼1

½uðxi; tÞ � ~uðxi; tÞ�2
 !1=2

; ð28Þ
is shown as a function of the time-step-size, Dt. In Fig. 5, the solution, uðx; tÞ, is plotted at few values of time.
5. The reconstruction method for solving PDEs in 2D and numerical examples of it

We first consider the problem of unevenly spaced samples in two dimensions, and then give some numerical examples.

5.1. Shannon formula for unevenly spaced points in 2D

Let f ðx; yÞ be a function, known at a finite number of unevenly spaced points, ðxi; yjÞ; i ¼ 1; . . . ;N; j ¼ 1; . . . ;M, and let T be
a one-to-one transformation mapping such points onto a set of points ð�xi; �yjÞ, evenly spaced, in each direction, x and y, with
steps Dx; Dy, respectively, i.e.
ð�xi; �yjÞ ¼ ðiDx; jDyÞ ¼ Tðxi; yjÞ; i ¼ 1;2; . . . N; j ¼ 1;2; . . . M:
If S denote the inverse of T, that is
ðxi; yjÞ ¼ Sð�xi; �yjÞ ¼ SðiDx; jDyÞ;
we define the application of f onto the domain of the evenly spaced points as
gð�x; �yÞ ¼ f ðSð�x; �yÞÞ ¼ f ðx; yÞ:
Hence, we assume to know g at the evenly spaced points ð�xi; �yjÞ for i ¼ 1; . . . ;N and j ¼ 1; . . . ;M, and want to reconstruct f on
the entire domain. The Shannon sampling theorem is used to realize such a task (with the usual restrictions and errors), and
hence to recover f ðx; yÞ:
f ðx; yÞ ¼
XN

i¼1

XM

j¼1

gðiDx; jDyÞsinc
�x� iDx

Dx

� �
sinc

�y� jDy
Dy

� �
: ð29Þ
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Fig. 4. Comparison between the numerical and the analytical solution in Example 4.3, at various times.

Table 1
Error computed at time T ¼ 5 for various time-step-sizes, Dt, in Example 4.3.

Dt e2

0.0016 0.0044529
0.0008 0.0022268
0.0004 0.0011135
0.0002 0.0005567
0.0001 0.0002784
0.00005 0.0001392
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In the method below, the coordinates of the points on which we want to reconstruct the signal, evolve in time, hence it is
necessary to devise a technique to construct at each time the transformation T that allows to map the unevenly spaced points
onto evenly spaced points. One can easily show that S is invertible, but its inverse is not easily computable. On the other
hand, it is not necessary to know T explicitly. In fact, the relation (29) can be applied when the points ð�x; �yÞ vary in the evenly
spaced domain, then assigning the computed value of f to the point ðx; yÞ ¼ Sð�x; �yÞ. For some information on the sampling
theory in several dimensions, see, e.g. [7].
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Fig. 5. Profile of solution, uðx; tÞ, in Example 4.3 at various times.
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5.2. Numerical examples

Example 5.2.1. Consider the linear PDE
ut þ ð1þ xÞux þ ð1þ yÞuy ¼ 0; ðx; yÞ 2 R2; t > 0; ð30Þ
with the initial condition
uðx; y; 0Þ ¼ u0ðx; yÞ:
This case is the 2D straightforward generalization of the 1D problem in Example 4.1. The characteristic stemming from
ðx0; y0Þ is the solution to the Cauchy problem
x0ðtÞ ¼ 1þ xðtÞ; xð0Þ ¼ x0

y0ðtÞ ¼ 1þ yðtÞ; yð0Þ ¼ y0;

(

hence
xðt; x0; y0Þ � xðtÞ ¼ ð1þ x0Þet � 1; yðt; x0; y0Þ � yðtÞ ¼ ð1þ y0Þet � 1:
On the characteristics, u satisfies the ODE
du
dt
ðxðtÞ; yðtÞ; tÞ ¼ 0;
and thus
uðxðtÞ; yðtÞ; tÞ ¼ u0ðx0; y0Þ: ð31Þ
As in the 1D problems, this procedure consists of the following steps:

� a rectangle, ½x1; x2� � ½y1; y2� is discretized with N �M (evenly spaced) nodes, ðxið0Þ; yjð0ÞÞ; i ¼ 1; . . . ;N; j ¼ 1; . . . ;M;
� the initial data, u0ðx; yÞ, is sampled at the points ðxið0Þ; yjð0ÞÞ, i.e. the coefficient
li ¼ u0ðxið0Þ; yjð0ÞÞ
is associated to each point ðxið0Þ; yjð0ÞÞ;
� the surface u0ðx; yÞ (it is nice to have a geometrical picture) is constructed by means of the basis functions sincðxÞsincðyÞ, in

view of Shannon theorem;
� the points ðxiðtÞ; yjðtÞÞ are let evolve according to the system of ODEs
dxi
dt ¼ 1þ xi

dyj

dt ¼ 1þ yj;

(

with the initial data xið0Þ; yjð0Þ; i ¼ 1; . . . ;N; j ¼ 1; . . . ;M, and such a system is solved numerically, e.g. by an explicit 4th-
order Runge-Kutta method (a TVD 3rd-order Runge–Kutta method [9,27] was also used, showing negligible discrepancies);

� at each fixed time t > 0, ‘‘the signal” uðx; y; tÞ can be reconstructed (with the usual restrictions), knowing that the value
li � uðxiðtÞ; yjðtÞ; tÞ ¼ u0ðxið0Þ; yjð0ÞÞ is assigned to the point ðxiðtÞ; yjðtÞÞ.
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As in the one-dimensional problems, when the points ðxiðtÞ; yjðtÞÞ evolve, in general they do not remain evenly spaced,
even though they may have started evenly spaced. For such a reason, the reconstruction should be carried out using a Shan-
non formula for unevenly spaced points.

The full procedure can be repeated to handle the more general class of PDEs
ut þ f ðx; yÞux þ gðx; yÞuy ¼ 0; ðx; yÞ 2 R2; t > 0;
for which the evolution of the points ðxiðtÞ; yjðtÞÞ is governed by the system
dxi
dt ¼ f ðx; yÞ; i ¼ 1; . . . ;N;
dyj

dt ¼ gðx; yÞ; j ¼ 1; . . . ;M;

8<:

with the initial conditions xið0Þ; yjð0Þ. Here we display the results obtained applying the method to the problem (30). In such
example, we considered a Lorentzian initial profile
u0ðx; yÞ ¼
1

1þ ðx� 5Þ8
1

1þ ðy� 5Þ8
;

and used N �M ¼ 80� 80 points to sample the signal. The quantities ðxiðtÞ; yjðtÞÞ were let evolve for t 2 ½0;2�. In Fig. 6, we
show uðx; y; tÞ at times t ¼ 0 and t ¼ 2. Note that when time goes on, the initial profile is translated but keeps its shape as
well as its maximum value, see (31).

Example 5.2.2. The linear PDE
ut þ xux þ yuy þ u ¼ 0; ðx; yÞ 2 R2; t > 0; ð32Þ
subject to the initial data
uðx; y; 0Þ � u0ðx; yÞ ¼
1

1þ ðx� x0Þ2m

1

1þ ðy� y0Þ
2m ;
has the solution
Fig. 6. Profile uðx; y; tÞ of Example 5.2.1. (a) t ¼ 0 and (b) t ¼ 2.
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uðx; y; tÞ ¼ e�t

½1þ ðxe�t � x0Þ2m�½1þ ðye�t � y0Þ
2m�

:

The equations for its characteristics stemming from ðx0; y0Þ are
x0ðtÞ ¼ xðtÞ; xð0Þ ¼ x0;

y0ðtÞ ¼ yðtÞ; yð0Þ ¼ y0;

�

and hence
xðt; x0; y0Þ � xðtÞ ¼ x0et; yðt; x0; y0Þ � yðtÞ ¼ y0et :
The solution of the PDE on the characteristics is obtained solving the ODE
du
dt
ðxðtÞ; yðtÞ; tÞ ¼ �u;
hence
uðxðtÞ; yðtÞ; tÞ ¼ u0ðx0; y0Þe�t: ð33Þ
The same procedure followed in Example 5.2.2 leads to the system
dxi
dt ¼ xi;

dyj

dt ¼ yj;

(

with initial data xið0Þ; yjð0Þ; i ¼ 1; . . . ;N and j ¼ 1; . . . ;M, that can be solved, again, e.g. by a Runge–Kutta method. Then, at
each time t > 0; uðx; y; tÞ can be reconstructed, knowing the value liðtÞ � uðxiðtÞ; yjðtÞ; tÞ ¼ u0ðxið0Þ; yjð0ÞÞe�t assigned to the
point ðxiðtÞ; yjðtÞÞ, see (33). As usual, the points will be in general unevenly spaced.

We applied this method, using the same Lorentzian profile used above as initial data in the previous example, and com-
pare the so-computed solution with the analytical solution, see Fig. 7 for t ¼ 2.

Example 5.2.3. The procedure described in the previous example, can be applied to the class of PDEs
ut þ f ðx; yÞux þ gðx; yÞuy þ hðx; yÞu ¼ 0; ðx; yÞ 2 R2; t > 0;
7. Comparison between uðx; y; tÞ and the analytical solution at time t ¼ 2 in Example 5.2.2. (a) Numerical solution and (b) analytical solution.
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where the evolution of the ðxiðtÞ; yjðtÞÞ’s is obtained solving the system of ODEs
dxi
dt ¼ f ðx; yÞ; i ¼ 1; . . . ;N;
dyj

dt ¼ gðx; yÞ; j ¼ 1; . . . ;M;

(

with the initial conditions xið0Þ; yjð0Þ. Let summarize the method for this more general class of PDEs. Consider a numerical
domain ½x1; x2� � ½y1; y2�, discretized with N �M (evenly spaced) nodes ðxið0Þ; yjð0ÞÞ for i ¼ 1; . . . ;N and j ¼ 1; . . . ;M. The initial
data u0ðx; yÞ is evaluated at the discrete points of this lattice, so that the following set of coefficients associated to the lattice
nodes are defined as
lij ¼ u0ðxið0Þ; yjð0ÞÞ:
The time evolution of the point coordinates ðxiðtÞ; yjðtÞÞ is described by the ODEs system above with the initial data
ðxið0Þ; yjð0ÞÞ. This system is solved numerically by a suitable algorithm, such as the 4th order Runga-Kutta scheme (as we
did in our examples).

Along the characteristics u satisfies the ODE
duðxðtÞ; yðtÞ; tÞ
dt

¼ �hðxðtÞ; yðtÞÞuðxðtÞ; yðtÞ; tÞ;
from which we obtain
uðxðtÞ; yðtÞ; tÞ ¼ u0ðxð0Þ; yð0Þ; 0Þ exp �
Z t

0
hðxðsÞ; yðsÞÞÞds

� �
: ð34Þ
From (34), we approximate the time evolution of the coefficients lijðtÞ ¼ uðxðtÞ; yðtÞ; tÞ. In particular, the coefficients lijðtÞ at
time t are given by\
lijðtÞ ¼ lijð0Þ exp �
Z t

0
hðxiðsÞ; yjðsÞÞds

� �
; i ¼ 1; . . . ;N; j ¼ 1; . . . ;M;
where the integral is evaluated numerically by the trapezoidal rule.
Finally, at each time t, the solution uðx; y; tÞ can be reconstructed by the Shannon formula (29) (for unevenly spaced

points), where each discrete point ðxiðtÞ; yjðtÞÞ is associated to its corresponding weight lijðtÞ.
As a specific example of this class of PDEs, we considered the PDE
ut þ ðxþ yÞux þ ðxþ yÞuy þ u ¼ 0; ðx; yÞ 2 R2; t > 0:
The points ðxiðtÞ; yjðtÞÞ evolve in such a way that the shape of the domain does not remain rectangular. Our method keeps
track of the deformation of the domain, and is capable nevertheless to reconstruct the solution correctly. In Fig. 8, the solu-
tion is shown at t ¼ 0 and at t ¼ 2.

Example 5.2.4. Applying our method to the linear PDE
ut þ x2ux þ y2uy þ 2ðxþ yÞu ¼ 0; ðx; yÞ 2 ½0;1� � ½0;1�; t > 0; ð35Þ
with the initial data
uðx; y; 0Þ � u0ðx; yÞ ¼ sinðpxÞ sinðpyÞ; ðx; yÞ 2 ½0;1� � ½0;1�;
we get for the characteristic exiting from ðx0; y0Þ the system
x0ðtÞ ¼ x2ðtÞ; xð0Þ ¼ x0

y0ðtÞ ¼ y2ðtÞ; yð0Þ ¼ y0:

(

and hence
xðt; x0; y0Þ � xðtÞ ¼ x0

1� x0t
; yðt; x0; y0Þ � yðtÞ ¼ y0

1� y0t
:

The solution on the characteristics can be computed solving the ODE
du
dt
ðxðtÞ; yðtÞ; tÞ ¼ �2ðxþ yÞu;
for ðx; yÞ 2 R2; t > 0, so that
uðxðtÞ; yðtÞ; tÞ ¼ u0ðx0; y0Þ exp �2
Z t

0
ðxðsÞ þ yðsÞÞds

� 	
: ð36Þ



 0
 0.2
 0.4
 0.6
 0.8
 1
 1.2

 0  2  4  6  8  10

 0
 2

 4
 6

 8
 10

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

 0
 0.02
 0.04
 0.06
 0.08
 0.1
 0.12
 0.14

 0  5  10  15  20  25

 0
 5

 10
 15

 20
 25

 0
 0.02
 0.04
 0.06
 0.08
 0.1

 0.12
 0.14

Fig. 8. Profile uðx; y; tÞ of Example 5.2.3. (a) t ¼ 0 and (b) t ¼ 2.
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Proceeding as above, we should first solve numerically the ODEs system
dxi
dt ¼ x2

i ;

dyj

dt ¼ y2
j ;

(

with initial data xið0Þ; yjð0Þ, for i ¼ 1; . . . ;N and j ¼ 1; . . . ;M, and then evaluate uðx; y; tÞ at each time t > 0 as
uðxiðtÞ; yjðtÞ; tÞ ¼ u0ðxið0Þ; yjð0ÞÞ exp �2
Z t

0
ðxðsÞ þ yðsÞÞds

� 	
;

in view of (36). The integral can be evaluated by a quadrature formula, stopping the calculations to the previous time-step,
hence introducing a time shift of OðDtÞ in computing the solution. In Fig. 9, the solution is shown at times t ¼ 0 and t ¼ 0:5.

Example 5.2.5. The two-dimensional analogue of Example 4.3, is the nonlinear PDE
@tuþ @x u
Z þ1

�1

Z þ1

�1
uðn;g; tÞdndg

� �
þ @y u

Z þ1

�1

Z þ1

�1
uðn;g; tÞdndg

� �
¼ f ðx; y; tÞ; ð37Þ
where
f ðx; y; tÞ :¼ � 1þ 2pðxþ yÞe�t
� �

e�ðx
2þy2þtÞ;
on the domain R2 � ð0; T�, with the initial and boundary conditions
uðx; y;0Þ ¼ u0ðx; yÞ :¼ e�ðx
2þy2Þ:

uð	1; y; tÞ :¼ lim
x!	1

uðx; y; tÞ ¼ 0; uðx;	1; tÞ :¼ lim
y!	1

uðx; y; tÞ ¼ 0;
The solution is
uðx; y; tÞ ¼ e�ðx
2þy2Þe�t:
The characteristic curves through the point ðx�; y�Þ are promptly obtained,
xðtÞ :¼ xðt; x�Þ ¼ x� þ
Z t

0

Z þ1

�1

Z þ1

�1
uðn;g; tÞdndg

� �
dt;

yðtÞ :¼ yðt; y�Þ ¼ y� þ
Z t

0

Z þ1

�1

Z þ1

�1
uðn;g; tÞdndg

� �
dt;



Fig. 9. Profile uðx; y; tÞ of Example 5.2.4. (a) t ¼ 0 and (b) t ¼ 0:5.
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hence the solution to Eq. (37) on the characteristics is
uðxðt; x�Þ; yðt; y�Þ; tÞ ¼ u0ðx�; y�Þ þ
Z t

0
f ðxðs; x�Þ; yðs; y�Þds: ð38Þ
Our algorithm can be implemented as in Example 4.3. The space domain considered here has been truncated to
½�a; a� � ½�b; b�, with a ¼ b ¼ 5, and the other parameters are Nx ¼ Ny ¼ 500, Dt ¼ 0:5� 10�4, and T ¼ 1. The solution has
been reconstructed on M ¼ 1000 points. In Fig. 10 the surface-solution is shown at times t ¼ 0:5 and t ¼ 1.

6. The case of systems of PDEs

Our method can be applied directly to systems of hyperbolic equations that admits of characteristics, but may also be ap-
plied in some other cases. Below, we give some numerical examples.

6.1. The general method

It is possible to apply our approach even to some systems which do not admit of characteristics, proceeding as follows.
Consider the following system of two coupled transport (hyperbolic) equations,
@tu1 þ r1ðxÞ@xu1 þ f1ðx; u1; u2; @xu2Þ ¼ 0;
@tu2 þ r2ðxÞ@xu2 þ f2ðx; u1; u2; @xu1Þ ¼ 0;

�
ð39Þ
satisfied by u1 � u1ðx; tÞ and u2 � u2ðx; tÞ. We can apply our method, which is based on the existence of characteristics, to
each one of such equations, considering u2 known in the first equation and u1 known in the second one. In particular, the
characteristic of the first equation stemming from x�1 is given by the solution, x1ðt; x�1Þ, of the Cauchy problem
x01 ¼ r1ðx1Þ;
x1ð0Þ ¼ x�1:

�
ð40Þ
Similarly, we obtain from the second equation in (39)
x02 ¼ r2ðx2Þ;
x2ð0Þ ¼ x�2;

�
ð41Þ
which yields the characteristic curve, x2ðt; x�2Þ, of the second equation.



Fig. 10. Comparison between the numerical and the analytical solution in Example 5.2.5, at time t ¼ 1: (a) Numerical solution at time t ¼ 0:5; (b) analytical
solution at time t ¼ 0:5; (c) numerical solution at time t ¼ 1 and (d) analytical solution at time t ¼ 1.
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Now, the functions u1; u2 satisfy, each on its own characteristics, the equation
du1;2

dt
ðx1;2ðtÞ; tÞ ¼

@u1;2

@t
þ @u1;2

@x
r1;2ðx1;2ðtÞÞ ¼ �f1;2ðx1;2ðtÞ; u1; u2; @xu2;1Þ;
wherefrom
u1;2ðx1;2ðtÞ; tÞ ¼ u0
1;2ðx�1;2Þ �

Z t

0
f1;2ðx1;2ðsÞ; u1; u2; @xu2;1Þds:
The idea now is to exploit the Shannon sampling method in both equations, proceeding as in Example 4.1. In the case of sys-
tems of two PDEs like (39), our algorithm can be applied to each of the them, as follows. The set of points, x�1i, x�2i, given ini-
tially (and which initially may even coincide), evolve according to different dynamics. In particular, the evolution of the
points x�1i is governed by the solution of the Cauchy problem (40), while that of the x�2i’s depend on the solution of (41). This
implies some complications in updating the coefficients u1i; u2i, which are given by
u1i � u1ðx1iðt; x�1iÞ; tÞ ¼ u0
1ðx�1iÞ �

Z t

0
f1ðx1iðsÞ;u1; u2; @xu2Þds;

u2i � u2ðx2iðt; x�2iÞ; tÞ ¼ u0
2ðx�2iÞ �

Z t

0
f2ðx2iðsÞ;u1; u2; @xu1Þds:

ð42Þ
In fact, in the integral term for u1i [u2i], the quantities u2 and @xu2 [u1 and @xu1] appear. It is therefore necessary to evaluate u2

and @xu2 on the characteristics of u1, and conversely. The values of u2 at the points x1i can be reconstructed by Shannon for-
mula. Similarly, we proceed to evaluate u1 at the points x2i. Computing @xu2 at x1i (as well as @xu1 at the x2i’s) requires instead
reconstructing u2 on a fine mesh and then using finite differences at x1i [at x2i]. Note that the quantities x1i and x2i, even if
they possibly started from the same values, will in general evolve in a different way. Hence, they might not cover the same
space interval, at a given time t > 0.

Now, u2 [u1] is computed at the points x1i [x2i], but it is known at the points x2i [x1i], and can be reconstructed in the inter-
val ½x2min; x2max� (respectively, ½x1min; x1max�). It follows that it is necessary to check that the two intervals do not depart beyond
some given tolerance. When this would happen, the endpoints of such intervals should be redefined so as to coincide adding
some points to the left and/or to the right where necessary.
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6.2. Numerical examples of the reconstruction method for systems of PDEs

In this subsection we give some numerical results, obtained applying our method to systems of PDEs, and compare them
with those obtained by finite difference schemes.

Example 6.2.1. Consider the system
Fig. 11.
line).
@tu1 � ð1þ xÞ@xu1 ¼ �u2;

@tu2 � x@xu2 ¼ �u1; x 2 R; t > 0:

�

From the first equation we derive the following Cauchy problem, which prescribes the evolution of the characteristics x1iðtÞ,
x01iðtÞ ¼ �ð1þ x1iðtÞÞ;
x1ið0Þ ¼ x�1i;

�

wherefrom
d
dt

u1ðx1iðtÞ; tÞ ¼ �u2ðx1iðtÞ; tÞ;
and hence
u1ðx1iðtÞ; tÞ ¼ u0
1ðx�1iÞ �

Z t

0
u2ðx1iðsÞ; sÞds:
Similarly, from the second equation it is the Cauchy problem
x02iðtÞ ¼ �x2iðtÞ;
x2ið0Þ ¼ x�2i;

�

which governs the evolution of the characteristics x2iðtÞ, from which
d
dt

u2ðx2iðtÞ; tÞ ¼ �u1ðx2iðtÞ; tÞ;
and thus
u2ðx2iðtÞ; tÞ ¼ u0
2ðx�2iÞ �

Z t

0
u1ðx2iðsÞ; sÞds:
Consider the initial profiles
u0
1ðxÞ ¼ u0

2ðxÞ ¼
1

1þ ðx� lÞ8
;

and choose ½xmin; xmax� ¼ ½0;10� and l ¼ 5. We discretize this interval with 80 equally distributed nodes, and proceed to the
reconstruction on 500 points. Let h ¼ 0:001 be the time-step used in the numerical scheme which solves the Cauchy
problems.
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Example 6.2.1: Comparison between u1ðx; tÞ given by the Shannon method (continuous line) and obtained by a finite difference scheme (dotted
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Fig. 12. Example 6.2.1: Comparison between u2ðx; tÞ given by Shannon’s method (continuous line) and that obtained by a finite difference scheme (dotted
line).
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In Fig. 11 a few profiles of u1ðx; tÞ are shown, drawn every 400 iterates and compared with those obtained by an explicit
finite difference scheme. The corresponding comparison for u2 is shown in Fig. 12. Note that the departure of solutions is
especially pronounced on the peaks. One may conjecture that such peaks are captured more accurately by Shannon’s meth-
od, since it is not diffusive, hence not dissipative, other than the finite difference scheme.

Example 6.2.2. Consider the system
Fig. 13.
line).
@tu1 þ @xðu1u2Þ ¼ 0;
@tu2 � x@xu2 ¼ �u1; x 2 R; t > 0:

�

From the first equation we have the Cauchy problem
x01iðtÞ ¼ u2ðx1iðtÞ; tÞ;
x1ið0Þ ¼ x�1i;

�

which prescribes the characteristics x1iðtÞ, thus
d
dt

u1ðx1iðtÞ; tÞ ¼ �u1ðx1iðtÞ; tÞ@xu2ðx1iðtÞ; tÞ;
and hence
u1ðx1iðtÞ; tÞ ¼ u0
1ðx�1iÞ exp �

Z t

0
@xu2ðx1iðsÞ; sÞds

� �
:
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Example 6.2.2: Comparison between u1ðx; tÞ computed by Shannon’s method (continuous line) and obtained by a finite difference scheme (dotted



0

4.5

3.5

3

2.5

2

1.5

1

0.5

0

–0.5

4

2 4 6 8 10

Fig. 14. Example 6.2.2: Comparison between u2ðx; tÞ computed by Shannon’s method (continuous line) and obtained by finite differences (dotted line).
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Similarly, from the second equation we derive the Cauchy problem
x02iðtÞ ¼ �x2iðtÞ;
x2ið0Þ ¼ x�2i;

�

which prescribes the evolution of the characteristics x2iðtÞ, thus
d
dt

u2ðx2iðtÞ; tÞ ¼ �u1ðx2iðtÞ; tÞ;
wherefrom
u2ðx2iðtÞ; tÞ ¼ u0
2ðx�2iÞ �

Z t

0
u1ðx2iðsÞ; sÞds:
We considered the same initial profiles and parameters of the previous example, but stopped the simulation at the 508th
iterate, since the characteristics of u1 cross each other. This spoils the profile of u1 and, consequently, that of u2 too. Results
are shown in Figs. 13 and 14.
7. Summary

A new method, based on the existence of characteristics, and for this reason essentially non-dissipative, is developed, to
solve numerically certain single scalar transport (hyperbolic) partial differential equations with smooth solutions, in any
dimension. It should be observed that, when applied to linear or semilinear hyperbolic PDEs, in arbitrary dimension, meth-
ods based on characteristics are parallelizable. The main idea here rests on sampling the initial profile and letting evolve the
so-obtained ‘‘samples” along the characteristics. The solution can be reconstructed at any subsequent time, exploiting the
Shannon sampling theorem. Shannon’s theorem allows to estimate the minimum number of samples with which the full
solution can be reconstructed, in principle without any interpolation error. A variety of errors, extensively analyzed in the
literature, however occur, and this can be taken into account. The existence of a recently found ‘‘fast sinc transform” may
also play an important role. A number of numerical examples are given to illustrate this approach.
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